Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 339
Filter
2.
Actual. osteol ; 19(1): 18-29, ago. 2023. tab
Article in English | LILACS, UNISALUD, BINACIS | ID: biblio-1511400

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNA molecules that play critical roles in post-transcriptional gene regulation. They function by binding to target messenger RNA (mRNA) molecules, leading to their degradation or inhibiting their translation into proteins. In the context of skeletal diseases, such as osteoporosis, osteoarthritis, and bone metastasis, there is growing evidence osteoblastic miRNAs, are involved in the regulation of bone formation and maintenance.Osteoblasts are bone-forming cells responsible for synthesizing and depositing the extracellular matrix, which ultimately mineralizes to form bone tissue. Osteoblastic miRNAs modulate various aspects of osteoblast function, including proliferation, differentiation, mineralization, and apoptosis. Dysregulation of these miRNAs can disrupt the balance between bone formation and resorption, leading to skeletal diseases.The therapeutic implications of targeting osteoblastic miRNAs in skeletal diseases are significant. Modulating the expression levels of specific miRNAs holds promise for developing novel therapeutic strategies to enhance bone formation, prevent bone loss, and promote bone regeneration. Potential therapeutic approaches include the use of synthetic miRNA mimics to restore miRNA expression in diseases associated with miRNA downregulation or the use of anti-miRNA oligonucleotides to inhibit miRNA function in diseases associated with miRNA upregulation.miRNA-based therapies are still in the early stages of development, and further research is needed to fully understand the complexity of miRNA networks. Additionally, the delivery of miRNAs to specific target tissues and cells remains a challenge that needs to be addressed for effective clinical translation. Nonetheless, targeting osteoblastic miRNAs represents a promising avenue for future therapeutic interventions in skeletal diseases. (AU)


Los micro-ARNs (miARNss) son pequeños ARN no codificantes que desempeñan un papel fundamental en la regulación génica postranscripcional. Ejercen su función al unir-se a moléculas de ARN mensajero (ARNm), promoviendo su degradación e inhibiendo su traducción en proteínas. En el contexto de las enfermedades esqueléticas, como la osteoporosis, la osteoartritis y la metástasis ósea existe evidencia de que los miARNs osteoblásticos están involucrados en la regulación de la formación y del mantenimiento óseo. Los osteoblastos son células formadoras de hueso responsables de sintetizar y depositar la matriz extracelular, que finalmente se mineraliza para formar el hueso. Los miARNs derivados de osteoblastos modulan varios aspectos de la función de estas células, incluida la proliferación, diferenciación, mineralización y la apoptosis. La desregulación de estos miARNs puede alterar el equilibrio entre la formación y la resorción ósea, lo que lleva a enfermedades óseas. Las implicaciones terapéuticas de los miARNs osteoblásticos en enfermedades esqueléticas son significativas. La modulación de los niveles de expresión de miARNs específicos es prometedora para desarrollar nuevas estrate-gias terapéuticas a fin de mejorar la formación, prevenir la pérdida y promover la regeneración ósea. Los enfoques terapéuticos potenciales incluyen el uso de miméticos de miARNs para restaurar la expresión de miARNs o el uso de oligonucleótidos anti-miARNs para inhibir su función. Las terapias basadas en miARNs aún se encuentran en las primeras etapas de desarrollo. La administración de miARNs a las células y los tejidos específicos sigue siendo un desafío para lograr una aplicación clínica eficaz. (AU)


Subject(s)
Humans , Osteoblasts/cytology , Osteogenesis/genetics , MicroRNAs/genetics , Osteoclasts/cytology , Bone Diseases/prevention & control , Signal Transduction , Gene Expression Regulation , MicroRNAs/biosynthesis , MicroRNAs/physiology , MicroRNAs/therapeutic use
3.
Journal of Integrative Medicine ; (12): 47-61, 2023.
Article in English | WPRIM | ID: wpr-971646

ABSTRACT

OBJECTIVE@#Huangqi Decoction (HQD), a classical traditional Chinese medicine formula, has been used as a valid treatment for alleviating liver fibrosis; however, the underlying molecular mechanism is still unknown. Although our previous studies showed that microRNA-663a (miR-663a) suppresses the proliferation and activation of hepatic stellate cells (HSCs) and the transforming growth factor-β/small mothers against decapentaplegic (TGF-β/Smad) pathway, whether long noncoding RNAs (lncRNAs) are involved in HSC activation via the miR-663a/TGF-β/Smad signaling pathway has not yet reported. The present study aimed to investigate the roles of lncRNA lnc-C18orf26-1 in the activation of HSCs and the mechanism by which HQD inhibits hepatic fibrosis.@*METHODS@#The expression levels of lnc-C18orf26-1, miR-663a and related genes were measured by quantitative reverse transcription-polymerase chain reaction. HSCs were transfected with the miR-663a mimic or inhibitor and lnc-C18orf26-1 small interfering RNAs. The water-soluble tetrazolium salt-1 assay was used to assess the proliferation rate of HSCs. Changes in lncRNA expression were evaluated in miR-663a-overexpressing HSCs by using microarray to identify miR-663a-regulated lncRNAs. RNA hybrid was used to predict the potential miR-663a binding sites on lncRNAs. Luciferase reporter assays further confirmed the interaction between miR-663a and the lncRNA. The expression levels of collagen α-2(I) chain (COL1A2), α-smooth muscle actin (α-SMA) and TGF-β/Smad signaling pathway-related proteins were determined using Western blotting.@*RESULTS@#Lnc-C18orf26-1 was upregulated in TGF-β1-activated HSCs and competitively bound to miR-663a. Knockdown of lnc-C18orf26-1 inhibited HSC proliferation and activation, downregulated TGF-β1-stimulated α-SMA and COL1A2 expression, and inhibited the TGF-β1/Smad signaling pathway. HQD suppressed the proliferation and activation of HSCs. HQD increased miR-663a expression and decreased lnc-C18orf26-1 expression in HSCs. Further studies showed that HQD inhibited the expression of COL1A2, α-SMA, TGF-β1, TGF-β type I receptor (TGF-βRI) and phosphorylated Smad2 (p-Smad2) in HSCs, and these effects were reversed by miR-663a inhibitor treatment.@*CONCLUSION@#Our study identified lnc-C18orf26-1 and miR-663a as promising therapeutic targets for hepatic fibrosis. HQD inhibits HSC proliferation and activation at least partially by regulating the lnc-C18orf26-1/miR-663a/TGF-β1/TGF-βRI/p-Smad2 axis.


Subject(s)
Humans , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta1/metabolism , RNA, Long Noncoding/pharmacology , Drugs, Chinese Herbal/pharmacology , MicroRNAs/genetics , Hepatic Stellate Cells/pathology , Liver Cirrhosis/metabolism , Cell Proliferation , Transforming Growth Factors/pharmacology
4.
Neuroscience Bulletin ; (6): 440-452, 2023.
Article in English | WPRIM | ID: wpr-971564

ABSTRACT

Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.


Subject(s)
Humans , RNA, Untranslated/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Circular , Central Nervous System Diseases/genetics
5.
Journal of Southern Medical University ; (12): 242-250, 2023.
Article in Chinese | WPRIM | ID: wpr-971521

ABSTRACT

OBJECTIVE@#To screen the differentially expressed long non-coding RNAs (lncRNAs) in non-small cell lung cancer (NSCLC) cells with acquired resistance to osimertinib and explore their roles in drug resistance of the cells.@*METHODS@#The cell lines H1975_OR and HCC827_OR with acquired osimertinib resistance were derived from their osimertinib-sensitive parental NSCLC cell lines H1975 and HCC827, respectively, and their sensitivity to osimertinib was assessed with CCK-8 assay, clone formation assay and flow cytometry. RNA sequencing (RNA-seq) and real-time quantitative PCR (qPCR) were used to screen the differentially expressed lncRNAs in osimertinib-resistant cells. The role of the identified lncRNA in osimertinib resistance was explored using CCK-8, clone formation and Transwell assays, and its subcellular localization and downstream targets were analyzed by nucleoplasmic separation, bioinformatics analysis and qPCR.@*RESULTS@#The resistance index of H1975_OR and HCC827_OR cells to osimertinib was 598.70 and 428.82, respectively (P < 0.001), and the two cell lines showed significantly increased proliferation and colony-forming abilities with decreased apoptosis (P < 0.01). RNA-seq identified 34 differentially expressed lncRNAs in osimertinib-resistant cells, and among them lnc-TMEM132D-AS1 showed the highest increase of expression after acquired osimertinib resistance (P < 0.01). Analysis of the TCGA database suggested that the level of lnc-TMEM132D-AS1 was significantly higher in NSCLC than in adjacent tissues (P < 0.001), and its high expression was associated with a poor prognosis of the patients. In osimertinib-sensitive cells, overexpression of Lnc-TMEM132D-AS1 obviously promoted cell proliferation, colony formation and migration (P < 0.05), while Lnc-TMEM132D-AS1 knockdown partially restored osimertinib sensitivity of the resistant cells (P < 0.01). Lnc-TMEM132D-AS1 was localized mainly in the cytoplasm, and bioinformatics analysis suggested that hsa-miR-766-5p was its candidate target, and their expression levels were inversely correlated. The target mRNAs of hsa-miR-766-5p were mainly enriched in the Ras signaling pathway.@*CONCLUSION@#The expression of lnc-TMEM132D-AS1 is significantly upregulated in NSCLC cells with acquired osimertinib resistance, and may serve as a potential biomarker and therapeutic target for osimertinibresistant NSCLC.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/genetics , RNA, Long Noncoding/metabolism , Sincalide/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism
6.
Journal of Southern Medical University ; (12): 68-75, 2023.
Article in Chinese | WPRIM | ID: wpr-971496

ABSTRACT

OBJECTIVE@#To investigate the inhibitory effect of miR-125b-5p on proliferation and migration of osteosarcoma and the role of RAB3D in mediating this effect.@*METHODS@#The expression level of miR-125b-5p was detected by qRT-PCR in a normal bone cell line (hFOB1.19) and in two osteosarcoma OS cell lines (MG63 and HOS). A miR-125b-5p mimic or inhibitor was transfected in the osteosarcoma cell lines via liposome and the changes in cell proliferation and migration were detected with EDU and Transwell experiments. Bioinformatic analysis was conducted for predicting the target gene of miR-125b-5p, and the expression level of RAB3D in hFOB1.19, MG63, and HOS cells was detected by Western blotting. In the two osteosarcoma cell lines transfected with miR-125b-5p mimic or inhibitor, the expression levels of RAB3D mRNA and protein in osteosarcoma cells were examined with qRT-PCR and Western blotting. The effects of RAB3D overexpression, RAB3D knockdown, or overexpression of both miR-125b-5p and RAB3D on the proliferation and migration of cells were assessed using EDU and Transwell experiments.@*RESULTS@#The two osteosarcoma cell lines had significantly lower expression levels of miR-125b-5p (P < 0.05). Bioinformatic analysis predicted that RAB3D was a possible target gene regulated by miR-125b-5p. In osteosarcoma cells, overexpression of miR-125b-5p significantly lowered the expression of RAB3D protein (P < 0.05); inhibiting miR-125b-5p expression significantly decreased RAB3D expression only at the protein level (P < 0.05) without obviously affecting its mRNA level. Modulation of miR-125b-5p and RAB3D levels produced opposite effects on proliferation and migration of osteosarcoma cells, and in cells with overexpression of both miR-125b-5p and RAB3D, the effect of RAB3D on cell proliferation and migration was blocked by miR-125b-5p overexpression (P < 0.05).@*CONCLUSION@#Overexpression of miR-125b-5p inhibits the proliferation and migration of osteosarcoma cells by regulating the expression of RAB3D at the post-transcriptional level.


Subject(s)
Humans , Bone Neoplasms/genetics , Cell Proliferation , MicroRNAs/genetics , Osteosarcoma/genetics , rab3 GTP-Binding Proteins/genetics , RNA, Messenger
7.
Journal of Southern Medical University ; (12): 8-16, 2023.
Article in Chinese | WPRIM | ID: wpr-971489

ABSTRACT

OBJECTIVE@#To investigate the correlation of the potential functional microRNA (miRNA)-mRNA regulatory network with recurrence of high-grade serous ovarian carcinoma (HGSOC) and its biological significance.@*METHODS@#This study was performed based on the data of 354 patients with HGSOC from the Cancer Genome Atlas database. In these patients, HGSOC was divided into different subtypes based on the pathways identified by GO analysis, and the correlations of the subtypes with HGSOC recurrence and differentially expressed miRNAs and mRNAs were assessed. Two relapse-related datasets were identified using the Gene Set Enrichment (GSE) database, from which the differentially expressed miRNAs were identified by intersection with the TCGA data. The target genes of these miRNAs were predicted using miRWalk 2.0 database, and these common differentially expressed miRNAs and mRNAs were used to construct the key miRNA-mRNA network associated with HGSOC recurrence. The expression of miR-506-3p and SNAI2 in two ovarian cancer cell lines was detected using RT-qPCR and Western blotting, and their targeted binding was verified using a double luciferase assay. The effect of miR-506-3p expression modulation on ovarian cancer cell migration was detected using scratch assay and Transwell assay.@*RESULTS@#We screened 303 GO terms of HGSOC-related pathways and identified two HGSOC subtypes (C1 and C2). The subtype C1 was associated with a significantly higher recurrence rate than C2. The differentially expressed genes between C1 and C2 subtypes were mainly enriched in epithelial-mesenchymal transition (EMT). Five miRNAs were identified as potential regulators of EMT, and a total of 41 target genes were found to be involved in the differential expressions of EMT pathway between C1 and C2 subtypes. The key miRNA-mRNA network associated with HGSOC recurrence was constructed based on these 5 miRNAs and 41 mRNAs. MiR-506-3p was confirmed to bind to SNAI2, and up-regulation of miR-506-3p significantly inhibited SNAI2 expression and reduced migration and invasion of SKOV3 and CAOV3 cells (P < 0.05), while miR-506-3p knockdown produced the opposite effects (P < 0.05).@*CONCLUSION@#MiR-506-3p and SNAI2 are the key molecules associated with HGSOC recurrence. MiR-506-3p may affect EMT of ovarian cancer cells by regulating cell migration and invasion via SNAI2, and its expression level has predictive value for HGSOC recurrence.


Subject(s)
Humans , Female , MicroRNAs/genetics , Neoplasm Recurrence, Local/genetics , Ovarian Neoplasms/genetics , Computational Biology
8.
China Journal of Chinese Materia Medica ; (24): 2512-2521, 2023.
Article in Chinese | WPRIM | ID: wpr-981327

ABSTRACT

This study aimed to demonstrate the effect of Banxia Baizhu Tianma Decoction(BBTD) on realizing withdrawal of anti-epileptic drugs and explore the relationship between BBTD and the amino acid metabolism by transcriptomic analysis in the rat model of epilepsy induced by lithium chloride-pilocarpine. The rats with epilepsy were divided into a control group(Ctrl), an epilepsy group(Ep), a BBTD & antiepileptic drug integrative group(BADIG), and an antiepileptic drug withdrawal group(ADWG). The Ctrl and Ep were given ultrapure water by gavage for 12 weeks. The BADIG was given BBTD extract and carbamazepine solution by gavage for 12 weeks. The ADWG was given carbamazepine solution and BBTD extract by gavage for the former 6 weeks, and then only given BBTD extract for the latter 6 weeks. The therapeutic effect was evaluated by behavioral observation, electroencephalogram(EEG), and hippocampal neuronal morphological changes. High-throughput sequencing was used to obtain amino acid metabolism-related differen-tial genes in the hippocampus, and the mRNA expression in the hippocampus of each group was verified by real-time quantitative polymerase chain reaction(RT-qPCR). The hub genes were screened out through protein-protein interaction(PPI) network, and Gene Ontology(GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed. Two ceRNA networks, namely circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA, were constructed for ADWG vs BADIG. The experimental results showed that compared with those in Ep, rats in ADWG were significantly improved in the behavioral observation, EEG, and hippocampal neuronal impairment. Thirty-four amino acid metabolism-related differential genes were obtained by transcriptomic analysis, and the sequencing results were confirmed by RT-qPCR. Eight hub genes were obtained through PPI network, involving several biological processes, molecular functions, and signal pathways related to amino acid metabolism. Finally, the circRNA-miRNA-mRNA ternary transcription network of 17 circRNA, 5 miRNA, and 2 mRNA, and a lncRNA-miRNA-mRNA ternary network of 10 lncRNA, 5 miRNA, and 2 mRNA were constructed in ADWG vs BADIG. In conclusion, BBTD can effectively achieve the withdrawal of antiepileptic drugs, which may be related to the transcriptomic regulation of amino acid metabolism.


Subject(s)
Rats , Animals , RNA, Circular/genetics , Transcriptome , RNA, Long Noncoding/genetics , Anticonvulsants , MicroRNAs/genetics , RNA, Messenger , Carbamazepine , Amino Acids , Gene Regulatory Networks
9.
Acta Academiae Medicinae Sinicae ; (6): 484-492, 2023.
Article in Chinese | WPRIM | ID: wpr-981295

ABSTRACT

Parkinson's disease(PD)is the second most common neurodegenerative disease after Alzheimer's disease,with high morbidity and high disability rate.Since the early symptoms of PD are not typical and often similar to those of normal aging or other diseases.It is easy to missed diagnosis and misdiagnosis,which seriously affects the diagnosis and treatment of this disease and aggravetes the burden on the patients' life.MicroRNAs(miRNA)are a class of endogenous non-coding RNAs that are involved in post-transcriptional regulation by binding to target messenger RNAs(mRNA).They are highly conserved,short,easy to obtain,and can stably exist in peripheral body fluids.They have been used as biomarkers for a variety of diseases.Recent studies have demonstrated that miRNA play an important role in the development of PD.This paper reviews the recent research progress of miR-7/124/155,three mature miRNA in PD,aiming to provide reference for clarifying the pathogenesis and guiding the diagnosis and treatment of PD.


Subject(s)
Humans , Parkinson Disease , Neurodegenerative Diseases , MicroRNAs/genetics , Gene Expression Regulation , Biomarkers/metabolism
10.
Chinese Journal of Biotechnology ; (12): 1425-1444, 2023.
Article in Chinese | WPRIM | ID: wpr-981147

ABSTRACT

The estimated new cases of breast cancer (BC) patients were 2.26 million in 2020, which accounted for 11.7% of all cancer patients, making it the most prevalent cancer worldwide. Early detection, diagnosis and treatment are crucial to reduce the mortality, and improve the prognosis of BC patients. Despite the widespread use of mammography screening as a tool for BC screening, the false positive, radiation, and overdiagnosis are still pressing issues that need to be addressed. Therefore, it is urgent to develop accessible, stable, and reliable biomarkers for non-invasive screening and diagnosis of BC. Recent studies indicated that the circulating tumor cell DNA (ctDNA), carcinoembryonic antigen (CEA), carbohydrate antigen 15-3 (CA15-3), extracellular vesicles (EV), circulating miRNAs and BRCA gene from blood, and the phospholipid, miRNAs, hypnone and hexadecane from urine, nipple aspirate fluid (NAF) and volatile organic compounds (VOCs) in exhaled gas were closely related to the early screening and diagnosis of BC. This review summarizes the advances of the above biomarkers in the early screening and diagnosis of BC.


Subject(s)
Humans , Female , Biomarkers, Tumor , Early Detection of Cancer , Breast Neoplasms/diagnosis , Prognosis , MicroRNAs/genetics
11.
Braz. j. biol ; 83: e242708, 2023. tab
Article in English | LILACS, VETINDEX | ID: biblio-1339382

ABSTRACT

Abstract MicroRNAs (miRNAs) are essential nonprotein-coding genes. In a range of organisms, miRNAs has been reported to play an essential role in regulating gene expressions at post-transcriptional level. They participate in most of the stress responsive processes in plants. Drought is an ultimate abiotic stress that affects the crop production. Therefore understanding drought stress responses are essential to improve the production of agricultural crops. Throughout evolution, plants have developed their own defense systems to cope with the adversities of environmental stresses. Among defensive mechanisms include the regulations of gene expression by miRNAs. Drought stress regulates the expression of some of the functionally conserved miRNAs in different plants. The given properties of miRNAs provide an insight to genetic alterations and enhancing drought resistance in cereal crops. The current review gives a summary to regulatory mechanisms in plants as well as miRNAs response to drought stresses in cereal crops. Some possible approaches and guidelines for the exploitation of drought stress miRNA responses to improve cereal crops are also described.


Resumo MicroRNAs (miRNAs) são genes essenciais não codificadores de proteínas. Em uma variedade de organismos, foi relatado que miRNAs desempenham papel essencial na regulação da expressão gênica em nível pós-transcricional. Eles participam da maioria dos processos responsivos ao estresse nas plantas. A seca é um estresse abiótico final que afeta a produção agrícola. Portanto, compreender as respostas ao estresse da seca é essencial para melhorar a produção de safras agrícolas. Ao longo da evolução, as plantas desenvolveram seus próprios sistemas de defesa para lidar com as adversidades do estresse ambiental. Entre os mecanismos de defesa está a regulação da expressão gênica por miRNAs. O estresse hídrico regula a expressão de alguns dos miRNAs funcionalmente conservados em diferentes plantas. As propriedades dadas dos miRNAs fornecem uma visão das alterações genéticas e aumentam a resistência à seca nas safras de cereais. A revisão atual apresenta um resumo dos mecanismos regulatórios nas plantas, bem como a resposta dos miRNAs ao estresse hídrico nas plantações de cereais. Algumas abordagens e diretrizes possíveis para a exploração das respostas do miRNA ao estresse da seca para melhorar as safras de cereais também são descritas.


Subject(s)
MicroRNAs/genetics , Droughts , Stress, Physiological/genetics , Crops, Agricultural/genetics , Crop Production
12.
Chinese Journal of Oncology ; (12): 499-507, 2023.
Article in Chinese | WPRIM | ID: wpr-984749

ABSTRACT

Objective: To clarify the mechanisms involvement in Alisertib-resistant colorectal cells and explore a potential target to overcome Alisertib-resistance. Methods: Drug-resistant colon cancer cell line (named as HCT-8-7T cells) was established and transplanted into immunodeficient mice. The metastasis in vivo were observed. Proliferation and migration of HCT-8-7T cells and their parental cells were assessed by colony formation and Transwell assay, respectively. Glycolytic capacity and glutamine metabolism of cells were analyzed by metabolism assays. The protein and mRNA levels of critical factors which are involved in mediating glycolysis and epithelial-mesenchymal transition (EMT) were examined by western blot and reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR), respectively. Results: In comparison with the mice transplanted with HCT-8 cells, which were survival with limited metastatic tumor cells in organs, aggressive metastases were observed in liver, lung, kidney and ovary of HCT-8-7T transplanted mice (P<0.05). The levels of ATP [(0.10±0.01) mmol/L], glycolysis [(81.77±8.21) mpH/min] and the capacity of glycolysis [(55.50±3.48) mpH/min] in HCT-8-7T cells were higher than those of HCT-8 cells [(0.04±0.01) mmol/L, (27.77±2.55) mpH/min and(14.00±1.19) mpH/min, respectively, P<0.05]. Meanwhile, the levels of p53 protein and mRNA in HCT-8-7T cells were potently decreased as compared to that in HCT-8 cells (P<0.05). However, the level of miRNA-125b (2.21±0.12) in HCT-8-7T cells was significantly elevated as compared to that in HCT-8 cells (1.00±0.00, P<0.001). In HCT-8-7T cells, forced-expression of p53 reduced the colon number (162.00±24.00) and the migration [(18.53±5.67)%] as compared with those in cells transfected with control vector [274.70±40.50 and (100.00±29.06)%, P<0.05, respectively]. Similarly, miR-125b mimic decreased the glycolysis [(25.28±9.51) mpH/min] in HCT-8-7T cells as compared with that [(54.38±12.70)mpH/min, P=0.003] in HCT-8-7T cells transfected with control. Meanwhile, in comparison with control transfected HCT-8-7T cells, miR-125b mimic also significantly led to an increase in the levels of p53 and β-catenin, in parallel with a decrease in the levels of PFK1 and HK1 in HCT-8-7T cells (P<0.05). Conclusions: Silencing of p53 by miR-125b could be one of the mechanisms that contributes to Alisertib resistance. Targeting miR-125b could be a strategy to overcome Alisertib resistance.


Subject(s)
Animals , Female , Mice , Humans , Azepines , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA, Messenger , Tumor Suppressor Protein p53/genetics , Drug Resistance, Neoplasm
13.
Biol. Res ; 56: 16-16, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1439483

ABSTRACT

BACKGROUND/AIMS: Diabetes mellitus (DM) is highly susceptible to diabetic hind limb ischemia (DHI). MicroRNA (MiR)-17-5p is downregulated in DM and plays a key role in vascular protection. Endothelial progenitor cell (EPC)-released exosomes (EPC-EXs) contribute to vascular protection and ischemic tissue repair by transferring their contained miRs to target cells. Here, we investigated whether miR-17-5p-enriched EPC-EXs (EPC-EXsmiR-17-5p) had conspicuous effects on protecting vascular and skeletal muscle in DHI in vitro and in vivo. METHODS: EPCs transfected with scrambled control or miR-17-5p mimics were used to generate EPC-EXs and EPC-EXsmiR-17-5p. Db/db mice were subjected to hind limb ischemia. After the surgery, EPC-EXs and EPC-EXsmiR-17-5p were injected into the gastrocnemius muscle of the hind limb once every 7 days for 3 weeks. Blood flow, microvessel density, capillary angiogenesis, gastrocnemius muscle weight, structure integrity, and apoptosis in the hind limb were assessed. Vascular endothelial cells (ECs) and myoblast cells (C2C12 cells) were subjected to hypoxia plus high glucose (HG) and cocultured with EPC-EXs and EPC-EXsmiR-17-5p. A bioinformatics assay was used to analyze the potential target gene of miR-17-5p, the levels of SPRED1, PI3K, phosphorylated Akt, cleaved caspase-9 and cleaved caspase-3 were measured, and a PI3K inhibitor (LY294002) was used for pathway analysis. RESULTS: In the DHI mouse model, miR-17-5p was markedly decreased in hind limb vessels and muscle tissues, and infusion of EPC-EXsmiR-17-5p was more effective than EPC-EXs in increasing miR-17-5p levels, blood flow, microvessel density, and capillary angiogenesis, as well as in promoting muscle weight, force production and structural integrity while reducing apoptosis in gastrocnemius muscle. In Hypoxia plus HG-injured ECs and C2C12 cells, we found that EPC-EXsmiR-17-5p could deliver their carried miR-17-5p into target ECs and C2C12 cells and subsequently downregulate the target protein SPRED1 while increasing the levels of PI3K and phosphorylated Akt. EPC-EXsmiR-17-5p were more effective than EPC-EXs in decreasing apoptosis and necrosis while increasing viability, migration, and tube formation in Hypoxia plus HG-injured ECs and in decreasing apoptosis while increasing viability and myotube formation in C2C12 cells. These effects of EPC-EXsmiR-17-5p could be abolished by a PI3K inhibitor (LY294002). CONCLUSION: Our results suggest that miR-17-5p promotes the beneficial effects of EPC-EXs on DHI by protecting vascular ECs and muscle cell functions.


Subject(s)
Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetes Mellitus , Cell Movement , Muscle, Skeletal/metabolism , Phosphatidylinositol 3-Kinases , Endothelial Cells , Ischemia , Hypoxia
14.
Braz. j. biol ; 83: 1-6, 2023. tab
Article in English | LILACS, VETINDEX | ID: biblio-1468902

ABSTRACT

MicroRNAs (miRNAs) are essential nonprotein-coding genes. In a range of organisms, miRNAs has been reported to play an essential role in regulating gene expressions at post-transcriptional level. They participate in most of the stress responsive processes in plants. Drought is an ultimate abiotic stress that affects the crop production. Therefore understanding drought stress responses are essential to improve the production of agricultural crops. Throughout evolution, plants have developed their own defense systems to cope with the adversities of environmental stresses. Among defensive mechanisms include the regulations of gene expression by miRNAs. Drought stress regulates the expression of some of the functionally conserved miRNAs in different plants. The given properties of miRNAs provide an insight to genetic alterations and enhancing drought resistance in cereal crops. The current review gives a summary to regulatory mechanisms in plants as well as miRNAs response to drought stresses in cereal crops. Some possible approaches and guidelines for the exploitation of drought stress miRNA responses to improve cereal crops are also described.


MicroRNAs (miRNAs) são genes essenciais não codificadores de proteínas. Em uma variedade de organismos, foi relatado que miRNAs desempenham papel essencial na regulação da expressão gênica em nível pós-transcricional. Eles participam da maioria dos processos responsivos ao estresse nas plantas. A seca é um estresse abiótico final que afeta a produção agrícola. Portanto, compreender as respostas ao estresse da seca é essencial para melhorar a produção de safras agrícolas. Ao longo da evolução, as plantas desenvolveram seus próprios sistemas de defesa para lidar com as adversidades do estresse ambiental. Entre os mecanismos de defesa está a regulação da expressão gênica por miRNAs. O estresse hídrico regula a expressão de alguns dos miRNAs funcionalmente conservados em diferentes plantas. As propriedades dadas dos miRNAs fornecem uma visão das alterações genéticas e aumentam a resistência à seca nas safras de cereais. A revisão atual apresenta um resumo dos mecanismos regulatórios nas plantas, bem como a resposta dos miRNAs ao estresse hídrico nas plantações de cereais. Algumas abordagens e diretrizes possíveis para a exploração das respostas do miRNA ao estresse da seca para melhorar as safras de cereais também são descritas.


Subject(s)
Edible Grain , MicroRNAs/analysis , MicroRNAs/genetics , Droughts
15.
Chinese Medical Journal ; (24): 1719-1731, 2023.
Article in English | WPRIM | ID: wpr-980961

ABSTRACT

BACKGROUND@#Angiogenesis is described as a complex process in which new microvessels sprout from endothelial cells of existing vasculature. This study aimed to determine whether long non-coding RNA (lncRNA) H19 induced the angiogenesis of gastric cancer (GC) and its possible mechanism.@*METHODS@#Gene expression level was determined by quantitative real-time polymerase chain reaction and western blotting. Cell counting kit-8, transwell, 5-Ethynyl-2'-deoxyuridine (EdU), colony formation assay, and human umbilical vein endothelial cells (HUVECs) angiogenesis assay as well as Matrigel plug assay were conducted to study the proliferation, migration, and angiogenesis of GC in vitro and in vivo . The binding protein of H19 was found by RNA pull-down and RNA Immunoprecipitation (RIP). High-throughput sequencing was performed and next Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted to analyze the genes that are under H19 regulation. Methylated RIP (me-RIP) assay was used to investigate the sites and abundance among target mRNA. The transcription factor acted as upstream of H19 was determined through chromatin immunoprecipitation (ChIP) and luciferase assay.@*RESULTS@#In this study, we found that hypoxia-induced factor (HIF)-1α could bind to the promoter region of H19, leading to H19 overexpression. High expression of H19 was correlated with angiogenesis in GC, and H19 knocking down could inhibit cell proliferation, migration and angiogenesis. Mechanistically, the oncogenic role of H19 was achieved by binding with the N 6 -methyladenosine (m 6 A) reader YTH domain-containing family protein 1 (YTHDF1), which could recognize the m 6 A site on the 3'-untransated regions (3'-UTR) of scavenger receptor class B member 1 (SCARB1) mRNA, resulting in over-translation of SCARB1 and thus promoting the proliferation, migration, and angiogenesis of GC cells.@*CONCLUSION@#HIF-1α induced overexpression of H19 via binding with the promoter of H19, and H19 promoted GC cells proliferation, migration and angiogenesis through YTHDF1/SCARB1, which might be a beneficial target for antiangiogenic therapy for GC.


Subject(s)
Humans , Cell Line, Tumor , Cell Proliferation/genetics , Endothelial Cells/metabolism , Gene Expression Regulation , Gene Expression Regulation, Neoplastic/genetics , Hypoxia , MicroRNAs/genetics , RNA , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Scavenger Receptors, Class B/metabolism , Stomach Neoplasms/genetics
16.
Chinese Medical Journal ; (24): 757-766, 2023.
Article in English | WPRIM | ID: wpr-980874

ABSTRACT

Long non-coding RNAs (lncRNAs) reportedly function as important modulators of gene regulation and malignant processes in the development of human cancers. The lncRNA JPX is a novel molecular switch for X chromosome inactivation and differentially expressed JPX has exhibited certain clinical correlations in several cancers. Notably, JPX participates in cancer growth, metastasis, and chemoresistance, by acting as a competing endogenous RNA for microRNA, interacting with proteins, and regulating some specific signaling pathways. Moreover, JPX may serve as a potential biomarker and therapeutic target for the diagnosis, prognosis, and treatment of cancer. The present article summarizes our current understanding of the structure, expression, and function of JPX in malignant cancer processes and discusses its molecular mechanisms and potential applications in cancer biology and medicine.


Subject(s)
Humans , RNA, Long Noncoding/genetics , Neoplasms/genetics , MicroRNAs/genetics , Gene Expression Regulation , X Chromosome Inactivation
17.
Chinese Medical Journal ; (24): 1300-1310, 2023.
Article in English | WPRIM | ID: wpr-980832

ABSTRACT

Accumulating studies have demonstrated that non-coding RNAs (ncRNAs), functioning as important regulators of transcription and translation, are involved in the establishment and maintenance of pregnancy, especially the maternal immune adaptation process. The endometrial stromal cells (ESCs), trophoblast cells, and decidua immune cells that reside at the maternal-fetal interface are thought to play significant roles in normal pregnancy and pregnancy-associated diseases. Here, we reviewed the up-to-date evidence on how microRNA, long non-coding RNA, and circular RNA regulate ESCs, trophoblast cells, and immune cells and discussed the potential applications of these ncRNAs as diagnostic and therapeutic markers in pregnancy complications.


Subject(s)
Pregnancy , Female , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Circular/genetics , Trophoblasts , Pregnancy Complications/genetics
18.
Chinese Acupuncture & Moxibustion ; (12): 447-453, 2023.
Article in Chinese | WPRIM | ID: wpr-980743

ABSTRACT

OBJECTIVE@#To observe the effect of needle-knife on the chondrocyte apoptosis of knee joint in rabbits with knee osteoarthritis (KOA) based on the CircSERPINE2-miR-1271-5P-E26 specific transformation-related gene (ERG) axis, and to explore the mechanism of needle-knife for KOA.@*METHODS@#Thirty-six New Zealand white rabbits were randomly divided into a normal group, a model group, a needle-knife group and a sham needle-knife group, 9 rabbits in each group. The rabbits in the model group, the needle-knife group and the sham needle-knife group were treated with modified Videman method to prepare KOA model. After successful modeling, the rabbits in the needle-knife group were treated with needle-knife at cord adhesion and nodules near quadriceps femoris tendon and internal and external collateral ligament on the affected knee joint; the rabbits in the sham needle-knife group were treated with sham needle-knife baside the needle insertion point of the needle-knife group (needle-knife was only inserted, without any operation). The treatment was given once a week, 3 times in total. The Lequesne MG behavioral score was used to evaluate the knee joint damage in each group before and after intervention. After intervention, HE staining and transmission electron microscopy were used to observe the cartilage tissue morphology and ultrastructure of chondrocytes in the knee joint in each group; TUNEL method was used to detect the level of chondrocyte apoptosis in the knee joint; real-time fluorescence quantitative PCR was used to detect the expression of CircSERPINE2, miR-1271-5P and ERG mRNA in knee cartilage tissue in each group.@*RESULTS@#After intervention, compared with the normal group, the Lequesne MG behavioral score in the model group was increased (P<0.01). Compared with the model group and the sham needle-knife group, the Lequesne MG behavioral score in the needle-knife group was decreased (P<0.01). In the model group and the sham needle-knife group, the number of chondrocytes and organelles was decreased, the cell nucleus was shrunk, mitochondria was swelling or disappeared; in the needle-knife group, the number of chondrocytes and organelles was increased, the cell nucleus was not obviously shrunk and the mitochondria was not obviously swelling. Compared with the normal group, the level of chondrocyte apoptosis in the model group was increased (P<0.01); compared with the model group and the sham needle-knife group, the level of chondrocyte apoptosis in the needle-knife group was decreased (P<0.01, P<0.05). Compared with the normal group, the expression of CircSERPINE2 and ERG mRNA in the model group was decreased (P<0.01), and the expression of miR-1271-5P mRNA was increased (P<0.01); compared with the model group and the sham needle-knife group, the expression of CircSERPINE2 and ERG mRNA in the needle-knife group was increased (P<0.01), and the expression of miR-1271-5P mRNA was decreased (P<0.01).@*CONCLUSION@#Needle-knife could reduce the knee joint damage and chondrocyte apoptosis in KOA rabbits, which may be related to up-regulating the expression of CircSERPINE2 and ERG mRNA, and inhibiting the expression of miR-1271-5P mRNA.


Subject(s)
Rabbits , Animals , Osteoarthritis, Knee/metabolism , Chondrocytes/metabolism , Knee Joint/surgery , Apoptosis , MicroRNAs/genetics
19.
Journal of Southern Medical University ; (12): 568-576, 2023.
Article in Chinese | WPRIM | ID: wpr-986963

ABSTRACT

OBJECTIVE@#To investigate the effect of Akt2 inhibitor on macrophage polarization in the periapical tissue in a rat model of periapical inflammation.@*METHODS@#Rat models of periapical inflammation were established in 28 normal SD rats by opening the pulp cavity of the mandibular first molars, followed by injection of normal saline and Akt2 inhibitor into the left and right medullary cavities, respectively. Four rats without any treatment served as the healthy control group. At 7, 14, 21 and 28 days after modeling, 7 rat models and 1 control rat were randomly selected for observation of inflammatory infiltration in the periapical tissues by X-ray and HE staining. Immunohistochemistry was used to detect the expression and localization of Akt2, macrophages and the inflammatory mediators. RT-PCR was performed to detect the mRNA expressions of Akt2, CD86, CD163, inflammatory mediators, miR-155-5p and C/EBPβ to analyze the changes in macrophage polarization.@*RESULTS@#X-ray and HE staining showed that periapical inflammation was the most obvious at 21 days after modeling in the rats. Immunohistochemistry and RT-PCR showed that compared with those in the control rats, the expressions of Akt2, CD86, CD163, miR-155-5p, C/EBPβ, and IL-10 increased significantly in the rat models at 21 days (P < 0.05). Compared with saline treatment, treatment with the Akt2 inhibitor significantly decreased the expression levels of Akt2, CD86, miR-155-5p and IL-6 and the ratio of CD86+M1/CD163+M2 macrophages (P < 0.05) and increased the expression levels of CD163, C/EBPβ and IL-10 in the rat models (P < 0.05).@*CONCLUSION@#Inhibition of Akt2 can delay the progression of periapical inflammation in rats and promote M2 macrophage polarization in the periapical inflammatory microenvironment possibly by reducing miR-155-5p expression and activating the expression of C/EBPβ in the Akt signaling pathway.


Subject(s)
Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , MicroRNAs/genetics , Interleukin-10 , Rats, Sprague-Dawley , Macrophages/metabolism , Inflammation/metabolism
20.
Journal of Peking University(Health Sciences) ; (6): 217-227, 2023.
Article in Chinese | WPRIM | ID: wpr-986842

ABSTRACT

OBJECTIVE@#To identify and characterize read-through RNAs and read-through circular RNAs (rt-circ-HS) derived from transcriptional read-through hypoxia inducible factor 1α (HIF1α) and small nuclear RNA activating complex polypeptide 1 (SNAPC1) the two adjacent genes located on chromosome 14q23, in renal carcinoma cells and renal carcinoma tissues, and to study the effects of rt-circ-HS on biological behavior of renal carcinoma cells and on regulation of HIF1α.@*METHODS@#Reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing were used to examine expression of read-through RNAs HIF1α-SNAPC1 and rt-circ-HS in different tumor cells. Tissue microarrays of 437 different types of renal cell carcinoma (RCC) were constructed, and chromogenic in situ hybridization (ISH) was used to investigate expression of rt-circ-HS in different RCC types. Small interference RNA (siRNA) and artificial overexpression plasmids were designed to examine the effects of rt-circ-HS on 786-O and A498 renal carcinoma cell proliferation, migration and invasiveness by cell counting kit 8 (CCK8), EdU incorporation and Transwell cell migration and invasion assays. RT-PCR and Western blot were used to exa-mine expression of HIF1α and SNAPC1 RNA and proteins after interference of rt-circ-HS with siRNA, respectively. The binding of rt-circ-HS with microRNA 539 (miR-539), and miR-539 with HIF1α 3' untranslated region (3' UTR), and the effects of these interactions were investigated by dual luciferase reporter gene assays.@*RESULTS@#We discovered a novel 1 144 nt rt-circ-HS, which was derived from read-through RNA HIF1α-SNAPC1 and consisted of HIF1α exon 2-6 and SNAPC1 exon 2-4. Expression of rt-circ-HS was significantly upregulated in 786-O renal carcinoma cells. ISH showed that the overall positive expression rate of rt-circ-HS in RCC tissue samples was 67.5% (295/437), and the expression was different in different types of RCCs. Mechanistically, rt-circ-HS promoted renal carcinoma cell proliferation, migration and invasiveness by functioning as a competitive endogenous inhibitor of miR-539, which we found to be a potent post-transcriptional suppressor of HIF1α, thus promoting expression of HIF1α.@*CONCLUSION@#The novel rt-circ-HS is highly expressed in different types of RCCs and acts as a competitive endogenous inhibitor of miR-539 to promote expression of its parental gene HIF1α and thus the proliferation, migration and invasion of renal cancer cells.


Subject(s)
Humans , Carcinoma, Renal Cell/pathology , Cell Proliferation , Hypoxia , Kidney Neoplasms , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , RNA, Circular/metabolism , RNA, Small Interfering , Hypoxia-Inducible Factor 1, alpha Subunit/genetics
SELECTION OF CITATIONS
SEARCH DETAIL